Intermediate 10 min read Updated 24/10/2024

How to Calculate P-Value in Excel

Learn how to calculate p-values in Excel using built-in statistical functions for different types of tests, including t-tests, z-tests, F-tests, and chi-square tests.

In this tutorial:

  • Using T.TEST function
  • Calculating Z-test p-values
  • CHISQ.TEST for categorical data
  • F.TEST for variance comparison

You'll need:

  • Excel (2010 or newer)
  • Data Analysis ToolPak
  • Basic statistics knowledge

How to Calculate P-Value in Excel

Method 1: Using T.TEST Function

1

Prepare Your Data

Arrange your two sample groups in separate columns.

Group1 | Group2
23 | 25
19 | 22
21 | 23
2

Apply T.TEST Function

=T.TEST(A2:A10, B2:B10, 2, 1)
  • • Parameter 1: First array (Group 1)
  • • Parameter 2: Second array (Group 2)
  • • Parameter 3: Tails (1 or 2)
  • • Parameter 4: Type (1=paired, 2=two-sample equal variance, 3=two-sample unequal variance)

Method 2: Using Z.TEST Function

1

Calculate Z-Test P-Value

=Z.TEST(array, x, [sigma])
  • • array: Your data range
  • • x: Value to test against
  • • sigma: Optional population standard deviation

Method 3: Using CHISQ.TEST Function

1

Set Up Contingency Table

Arrange observed and expected frequencies in separate ranges.

=CHISQ.TEST(actual_range, expected_range)

Interpreting P-Values

Common Significance Levels:

  • p < 0.05: Statistically significant
  • p < 0.01: Highly significant
  • p < 0.001: Very highly significant

Decision Rules:

  • Reject H₀ if p < α (significance level)
  • Fail to reject H₀ if p ≥ α

Pro Tips and Best Practices

  • Always check assumptions before choosing a statistical test
  • Consider sample size when interpreting results
  • Report exact p-values rather than just "significant" or "not significant"

Common Issues and Solutions

  • #NUM! Error:

    Check for invalid data types or zero variance in your samples.

  • #N/A Error:

    Ensure your arrays are the same size and contain numeric data.